Connectivity Solutions

Additional Products

Dedicated Compute, On Demand
Dedicated Compute, On Demand
Spin up Latitude.sh CPUs and GPUs in key markets, then use Megaport private connectivity to reach clouds and data centers across 1,000+ locations with predictable performance.
Explore Compute

Explore

Build

Join the Megaport Community
Join the Megaport Community
The community for network engineers, IT leaders, and partners to swap ideas and build what’s next.
Join Community

Get in touch

Corporate Info

Partners

It's official: Megaport x Latitude.sh
It's official: Megaport x Latitude.sh
Latitude.sh dedicated compute meets Megaport private connectivity so you can launch fast and run anywhere.
Press Start
A brief history of Fibre Optics

A brief history of Fibre Optics

Explore the fascinating history of fibre optics, from its ancient origins with the Romans drawing glass fibres in 27BC to its modern-day applications in telecommunications, medicine, and entertainment. Discover how this ubiquitous technology evolved from a simple concept into a cornerstone of connectivity.

While fibre technology has become ubiquitous in today’s modern telecommunications networks, did you know that fibre optic technology has been around for a very long time and is quite simple in concept. Glass dates back to around 3000BC and the Romans were drawing glass into fibre as early as 27BC. So while fibre has become an everyday technology ranging from medical to telecommunications to entertainment applications, you can see from its history that fibre has come a very long way in a very short time.

The following is an historical chronology of some of the key milestones with regards to fibre optics.

~3000BC - Earliest known making of glass in the Bronze Ages.

~27BC - Romans draw glass into fibre.

1840s - Jacques Babinet guides light in water and bent glass rods.

1888 - Bent glass rods used to illuminate body cavities for medical purposes.

1920s - Microscope illumination achieved using bent glass rods.

1931 - Mass production of glass fibres conceived.

1951 - First discussions of using transparent cladding on glass or plastic fibres.

1959 - American Optical draws fibres so fine they can only transmit a single mode of light.

1960 - First lasers demonstrated.

1966 - Charles Kao indicates that fibre losses could be reduced to below 20dB per kilometre for office to office communications.

1967 - Corning starts making high-loss fibres. Research into sing titanium doping and silica cladding commences.

1970 - Corning develop single-mode fibre with losses of 17dB per kilometre by using titanium doping. Also first room-temperature, continuous-wave semiconductor lasers made.

1971 - Bell Labs, University of Southampton and CSIRO in Australia experiment with liquid-core fibres.

1973 - Diode laser lifetime reaches 1000 hours.

1975 - First non-experimental fibre optic link installed by Dorset police.

1976 - First fibres manufactured with low loss of 0.47 dB per kilometre. Lifetime of lasers reaches 100,000 hours (10 years).

1977 - Bell Labs extrapolates 100-year lifetime for diode lasers.

1978 - First Fibre Optic Con trade show held in Boston.

1980 - Fibre system carries video signal for Lake Placid Winter Olympics. 9.5km submarine cable lay in Loch Fyne.

1981 - Canada trials fibre optics to homes in Manitoba.

1982 - MCI prepares to lay single-mode fibre from Washington to New York.

1984 - First fibre optic submarine cable laid to Isle of Wight by BT.

1986 - English Channel fibre optic service commences.

1988 - TAT-8 becomes operational as first transatlantic fibre optic cable.

1996 - One trillion bits per second transmitted over single mode fibre.

1997 - FLAG (fibre optic link around the globe) went into service spanning over 28,000kms and offering 10Gbps services.

1998 - Large effective are fibres are introduced.

2000 - Sumitomo Z-PLUS Fiber, was introduced with lower attenuation of 0.168 dB/km

2002 - Z+ Ultra low loss Pure Silica Core Fibre with much lower attenuation was demonstrated in 2002

2006 - Ribbon fibre cable is introduced to increase fibre core counts in smaller diameter cables.

2009 - Bend insensitive (G.657) fibre introduced.

Related Posts

Your 2026 Predictions From AWS re:Invent 2025

Your 2026 Predictions From AWS re:Invent 2025

We look at the practical shifts unveiled at AWS re:Invent 2025 and how they’ll influence AI, networking, and cloud strategy heading into 2026.

Read More
Rethinking IX’s Role in Optimal Network Performance

Rethinking IX’s Role in Optimal Network Performance

Enterprises need to rethink the way they’re using internet peering. More than just a way to pay less for IP transit, it can be the key to unlocking a high-performance network.

Read More
Video: How to Connect Your AWS and Azure Environments Part 1

Video: How to Connect Your AWS and Azure Environments Part 1

Our Solutions Architect Kyle Moreta walks you through how to efficiently connect your AWS and Microsoft Azure cloud environments with the help of Megaport.

Read More